Structural Features of the Regulatory ACT Domain of Phenylalanine Hydroxylase

نویسندگان

  • Carla Carluccio
  • Franca Fraternali
  • Francesco Salvatore
  • Arianna Fornili
  • Adriana Zagari
چکیده

Phenylalanine hydroxylase (PAH) catalyzes the conversion of L-Phe to L-Tyr. Defects in PAH activity, caused by mutations in the human gene, result in the autosomal recessively inherited disease hyperphenylalaninemia. PAH activity is regulated by multiple factors, including phosphorylation and ligand binding. In particular, PAH displays positive cooperativity for L-Phe, which is proposed to bind the enzyme on an allosteric site in the N-terminal regulatory domain (RD), also classified as an ACT domain. This domain is found in several proteins and is able to bind amino acids. We used molecular dynamics simulations to obtain dynamical and structural insights into the isolated RD of PAH. Here we show that the principal motions involve conformational changes leading from an initial open to a final closed domain structure. The global intrinsic motions of the RD are correlated with exposure to solvent of a hydrophobic surface, which corresponds to the ligand binding-site of the ACT domain. Our results strongly suggest a relationship between the Phe-binding function and the overall dynamic behaviour of the enzyme. This relationship may be affected by structure-disturbing mutations. To elucidate the functional implications of the mutations, we investigated the structural effects on the dynamics of the human RD PAH induced by six missense hyperphenylalaninemia-causing mutations, namely p.G46S, p.F39C, p.F39L, p.I65S, p.I65T and p.I65V. These studies showed that the alterations in RD hydrophobic interactions induced by missense mutations could affect the functionality of the whole enzyme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis for ligand-dependent dimerization of phenylalanine hydroxylase regulatory domain.

The multi-domain enzyme phenylalanine hydroxylase (PAH) catalyzes the hydroxylation of dietary I-phenylalanine (Phe) to I-tyrosine. Inherited mutations that result in PAH enzyme deficiency are the genetic cause of the autosomal recessive disorder phenylketonuria. Phe is the substrate for the PAH active site, but also an allosteric ligand that increases enzyme activity. Phe has been proposed to ...

متن کامل

The Amino Acid Specificity for Activation of Phenylalanine Hydroxylase Matches the Specificity for Stabilization of Regulatory Domain Dimers

Liver phenylalanine hydroxylase is allosterically activated by phenylalanine. The structural changes that accompany activation have not been identified, but recent studies of the effects of phenylalanine on the isolated regulatory domain of the enzyme support a model in which phenylalanine binding promotes regulatory domain dimerization. Such a model predicts that compounds that stabilize the r...

متن کامل

PKU mutation p.G46S prevents the stereospecific binding of l‐phenylalanine to the dimer of human phenylalanine hydroxylase regulatory domain

Mammalian phenylalanine hydroxylase (PAH) has a potential allosteric regulatory binding site for l-phenylalanine (l-Phe), in addition to its catalytic site. This arrangement is supported by a crystal structure of a homodimeric truncated form of the regulatory domain of human PAH (hPAH-RD 1-118/19-118) [Patel D et al. (2016) Sci Rep doi: 10.1038/srep23748]. In this study, a fusion protein of the...

متن کامل

Phenylalanine Binding Is Linked to Dimerization of the Regulatory Domain of Phenylalanine Hydroxylase

Analytical ultracentrifugation has been used to analyze the oligomeric structure of the isolated regulatory domain of phenylalanine hydroxylase. The protein exhibits a monomer-dimer equilibrium with a dissociation constant of ~46 μM; this value is unaffected by the removal of the 24 N-terminal residues or by phosphorylation of Ser16. In contrast, phenylalanine binding (Kd = 8 μM) stabilizes the...

متن کامل

Mutation analysis of Phenylalanine hydroxylase gene in Iranian patients with Phenylketonuria

Background: Phenylketonuria as the most common genetic metabolic disorder is the result of disruption of the phenylalanine hydroxylase gene. This study was carried out to explore the phenylalanine hydroxylase gene mutation status of Iranian phenylketonuria patients.    Methods: Blood samples were collected from 30 patients, and hot spot areas of the phenylalanine hydroxylase gene, in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013